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OUTLINE

QCD phase diagram from the lattice ?

sign problem at finite chemical potential

a revived approach: stochastic quantization

heavy dense QCD

relativistic Bose gas and the Silver blaze problem

instabilities and runaways
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LATTICE QCD
IMPORTANCE SAMPLING

partition function: Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SB detM

if e−SB detM > 0, interpret as probability weight

evaluate using importance sampling
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LATTICE QCD
IMPORTANCE SAMPLING

partition function: Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SB detM

if e−SB detM > 0, interpret as probability weight

evaluate using importance sampling

QCD at finite baryon chemical potential:

[detM(µ)]∗ = detM(−µ∗)

fermion determinant is complex!

importance sampling not possible

sign problem

basic tool of all lattice QCD algorithms breaks down
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WHY IS THE SIGN PROBLEM DIFFICULT?
PHASE QUENCHED THEORY

write detM = | detM |eiϕ

phase quenched theory with weight e−SB | detM | > 0

observables:

〈O〉full =

∫

DU e−SB detM O
∫

DU e−SB detM
=

〈eiϕO〉pq

〈eiϕ〉pq
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WHY IS THE SIGN PROBLEM DIFFICULT?
PHASE QUENCHED THEORY

write detM = | detM |eiϕ Ω = lattice volume

phase quenched theory with weight e−SB | detM | > 0

observables:

〈O〉full =

∫

DU e−SB detM O
∫

DU e−SB detM
=

〈eiϕO〉pq

〈eiϕ〉pq
→ 0

0
→ ??

average phase factor

〈eiϕ〉pq =

∫

DU e−SB | detM | eiϕ
∫

DU e−SB | detM | =
Zfull

Zpq
= e−Ω∆f → 0

overlap problem, exponentially hard in thermodynamic limit
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QCD AT FINITE µ
SIGN PROBLEM

configurations differ in an essential way from those
obtained at µ = 0 or with | detM |
cancelation between configurations with ‘positive’ and
‘negative’ weight

how to pick the dominant configurations in the path
integral?
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QCD AT FINITE µ
SIGN PROBLEM

configurations differ in an essential way from those
obtained at µ = 0 or with | detM |
cancelation between configurations with ‘positive’ and
‘negative’ weight

how to pick the dominant configurations in the path
integral?

radically different approach:

complexifying all degrees of freedom: SU(3) → SL(3,C)

stochastic quantization and complex Langevin dynamics
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

idea: Parisi & Wu ’81

path integral Z =
∫

Dφe−S

do not interpret weight as a probability measure

instead: equilibrium distribution of stochastic process

Brownian motion ⇔ Langevin eq ⇔ Fokker-Planck eq

Langevin dynamics in “fifth” time direction

∂φx(θ)

∂θ
= − δS[φ]

δφx(θ)
+ ηx(θ)

Gaussian noise 〈η〉 = 0 〈ηx(θ)ηx′(θ′)〉 = 2δxx′δ(θ − θ′)

compute expectation values limθ→∞〈φx(θ)φx′(θ)〉, etc
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

action and force δS/δφ complex: Parisi, Klauder ’83

complexify Langevin dynamics

example: real scalar field φ→ φR + iφI

Langevin eqs

∂φR

∂θ
= −Re

δS

δφ

∣

∣

∣

φ→φR+iφI

+ η

∂φI

∂θ
= −Im

δS

δφ

∣

∣

∣

φ→φR+iφI

observables: analytic extension 〈O(φ)〉 → 〈O(φR + iφI)〉
theoretical status not well-established (!)
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READING MATERIAL
HISTORY

original suggestion: Parisi & Wu ’81, Parisi, Klauder ’83

overview: Damgaard and Hüffel, Physics Reports ’87

finite µ for three-dimensional spin models:
Karsch & Wyld PRL ’85, . . .

renewed interest for Minkowski dynamics:
Berges, Borsanyi, Sexty, Stamatescu ’05-’08
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READING MATERIAL
THIS TALK

heavy dense QCD and related models:

G.A. and I.O. Stamatescu: hep-lat/0807.1597, JHEP
proceedings: hep-lat/0809.5527, hep-ph/0811.1850

Bose gas:

G.A.: hep-lat/0810.2089, PRL, hep-lat/0902.4686, JHEP
proceedings: hep-lat/0910.3772

instabilities:

G.A., F. James, E. Seiler & I.O.S.: hep-lat/0912.0617, PLB

convergence:

G.A., E.S. & I.O.S.: hep-lat/0912.3360
G.A., F.J., E.S. & I.O.S.: in preparation
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HEAVY DENSE QCD
STATIC QUARKS

bosonic action: standard SU(3) Wilson action

SB = −β
∑

P

(

1

6

[

TrUP + TrU−1
P

]

− 1

)

Wilson fermions in hopping expansion

detM ≈
∏

x

det
(

1 + heµ/TPx

)2
det

(

1 + he−µ/TP−1
x

)2

with h = (2κ)Nτ and (conjugate) Polyakov loops P(−1)
x

static quarks propagate in temporal direction only

[detM(µ)]∗ = detM(−µ∗)
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COMPLEX LANGEVIN DYNAMICS

Langevin update:

U(θ + ε) = R(θ)U(θ) R = exp
[

iλa

(

εKa +
√
εηa

)]

Gell-mann matrices λa (a = 1, . . . 8)
drift term

Ka = −DaSeff Seff = SB+SF SF = − ln detM

noise
〈ηa〉 = 0 〈ηaηb〉 = 2δab

real action: ⇒ K† = K ⇔ U ∈ SU(3)

complex action: ⇒ K† 6= K ⇔ U ∈ SL(3,C)
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(CONJUGATE) POLYAKOV LOOPS

HEAVY DENSE QCD

first results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3
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DENSITY
HEAVY DENSE QCD

first results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3
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SU(3) → SL(3,C)
HEAVY DENSE QCD

complex Langevin dynamics: no longer in SU(3)

instead U ∈ SL(3,C)

in terms of gauge potentials U = eiλaAa/2

Aa is now complex

how far from SU(3)?

consider

1

N
TrU †U











= 1 if U ∈ SU(N )

≥ 1 if U ∈ SL(N ,C)
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SU(3) → SL(3,C)
HEAVY DENSE QCD

1

3
TrU †U ≥ 1 = 1 if U ∈ SU(3)
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OVERLAP PROBLEM
HOW DOES IT WORK?

most approaches start from µ = 0 or | detM(µ)|

complex Langevin dynamics radically different

visualization in simple U(1) model:

U = eix with −π < x ≤ π

complexification: x→ x+ iy

SB = −β

2

(

U + U−1
)

= −β cos x

det M = 1 +
1

2
κ

[

eµU + e−µU−1
]

= 1 + κ cos(x − iµ)

partition function: Z =

∫ π

−π

dx

2π
eβ cos x [1 + κ cos(x − iµ)]
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OVERLAP PROBLEM
HOW DOES IT WORK?

flow diagrams and Langevin evolution
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black dots: classical fixed points

µ = 0: dynamics only in x direction

µ > 0: spread in y direction
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OVERLAP PROBLEM
HOW DOES IT WORK?
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PHASE TRANSITIONS AND THE SILVER BLAZE

intriguing questions:

how severe is the sign problem?

thermodynamic limit?

phase transitions?

Silver Blaze problem? Cohen ’03

. . .

study in a model with a phase diagram with similar features
as QCD at low temperature

⇒ relativistic Bose gas at nonzero µ
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RELATIVISTIC BOSE GAS
PHASE TRANSITIONS AND THE SILVER BLAZE

scalar O(2) model with global symmetry

lattice action

S =
∑

x

[

(

2d+m2
)

φ∗xφx + λ (φ∗xφx)2

−
4

∑

ν=1

(

φ∗xe
−µδν,4φx+ν̂ + φ∗x+ν̂e

µδν,4φx

)

]

complex scalar field, d = 4, m2 > 0

S∗(µ) = S(−µ∗) as in QCD

also studied by Endres using worldline formulation hep-lat/0610029
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RELATIVISTIC BOSE GAS
PHASE TRANSITIONS AND THE SILVER BLAZE

nonderivative terms at tree level in the continuum

V (φ) = (m2 − µ2)|φ|2 + λ|φ|4

condensation when µ2 > m2, SSB

Silver
Blaze
problem <φ> = 0

T

µ

<φ> = 0
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

write φ = (φ1 + iφ2)/
√

2 ⇒ φa (a = 1, 2)

complexification φa → φR
a + iφI

a

complex Langevin equations

∂φR
a

∂θ
= −Re

δS

δφa

∣

∣

∣

φa→φR
a +iφI

a

+ ηa

∂φI
a

∂θ
= −Im

δS

δφa

∣

∣

∣

φa→φR
a +iφI

straightforward to solve numerically, m = λ = 1

lattices of size N4, with N = 4, 6, 8, 10
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

field modulus squared |φ|2 → 1
2

(

φR
a

2 − φI
a
2
)

+ iφR
a φ

I
a
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

field modulus squared |φ|2 → 1
2

(
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second order phase transition in thermodynamic limit
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

density 〈n〉 = (1/Ω)∂ lnZ/∂µ
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

density 〈n〉 = (1/Ω)∂ lnZ/∂µ
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Mumbai, February 2010 – p.19



SILVER BLAZE AND THE SIGN PROBLEM
RELATIVISTIC BOSE GAS

Silver Blaze and sign problems are intimately related

complex action: e−S = |e−S |eiϕ

phase quenched theory Zpq =
∫

Dφ|e−S |

physics of phase quenched theory:

chemical potential appears only in mass parameter
(in continuum notation)

V = (m2 − µ2)|φ|2 + λ|φ|4

dynamics of symmetry breaking, no Silver Blaze
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SILVER BLAZE AND THE SIGN PROBLEM
COMPLEX VS PHASE QUENCHED

density
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complex phase quenched

phase eiϕ = e−S/|e−S | does precisely what is expected
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HOW SEVERE IS THE SIGN PROBLEM?
AVERAGE PHASE FACTOR

complex action e−S = |e−S |eiϕ

average phase factor in phase quenched theory

〈eiϕ〉pq =
Zfull

Zpq
= e−Ω∆f → 0 as Ω → ∞

exponentially hard in thermodynamic limit
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HOW SEVERE IS THE SIGN PROBLEM?
AVERAGE PHASE FACTOR
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INSTABILITIES

old problem from the 80s: instabilities and runaways

unstable classical trajectories

force not always restoring

noise should kick trajectories of unstable paths.

careful integration mandatory

adaptive stepsize

XY model at nonzero µ and heavy dense QCD
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INSTABILITIES
XY MODEL

three-dimensional XY model at nonzero µ

S = −β
∑

x

2
∑

ν=0

cos (φx − φx+ν̂ − iµδν,0)

µ couples to the conserved Noether charge

symmetry S∗(µ) = S(−µ∗)

unexpectedly difficult to simulate with complex Langevin!

numerics shares many features with heavy dense QCD

also studied by Banerjee & Chandrasekharan using worldline formulation
hep-lat/1001.3648
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INSTABILITIES
XY MODEL

classical forces

KR
x = −Re

∂S

∂φx

KI
x = −Im

∂S

∂φx

restrict maximal step εKmax

large force ⇔ small stepsize
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INSTABILITIES
XY MODEL

Kmax and adaptive time step during the evolution
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β=0.1, µ=2, 163
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INSTABILITIES
XY MODEL

Kmax behaves as expected:

fluctuates over several orders of magnitude

fluctuations increase with volume:
more potentially unstable trajectories

stepsize has to be small occasionally but recovers

with adaptive stepsize: no instabilities encountered!

many very long runs for wide range of parameters

with fixed stepsize: impossible to generate a thermalized configuration!
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INSTABILITIES
HEAVY DENSE QCD, β = 5, κ = 0.12, µ = 0.7, 24

same is true for heavy dense QCD

0 100000 200000 300000

Langevin iteration
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occasionally very small stepsize required
can go to longer Langevin times without problems
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XY MODEL
PHYSICS RESULT

action density in the magnetized phase (β = 0.55)
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real µ (µ2 > 0) imaginary µ (µ2 < 0) and phase quenched
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XY MODEL
PHYSICS RESULT

real and imag µ results analytic in µ2

phase quenched result distinctly different

imaginary µ:

“Roberge-Weiss” transition at µI = π/Nτ

(center symmetry is trivial)
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SUMMARY
FINITE CHEMICAL POTENTIAL

many stimulating results:

complex Langevin can handle

sign problem

Silver Blaze problem

nonabelian dynamics

phase transition

thermodynamic limit

SU(3) → SL(3,C)

problems from the 80s:

instabilities and runaways → adaptive stepsize

convergence to correct result: can be highly nontrivial
hep-lat/0912.3360
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