FINITE DENSITY WITH COMPLEX LANGEVIN DYNAMICS

Gert Aarts

Swansea University

OUTLINE

- QCD phase diagram from the lattice ?
- sign problem at finite chemical potential

a revived approach: stochastic quantization

- heavy dense QCD
- relativistic Bose gas and the Silver blaze problem
- instabilities and runaways

LATTICE QCD

IMPORTANCE SAMPLING

partition function: $Z = \int DU D\bar{\psi} D\psi e^{-S} = \int DU e^{-S_B} \det M$

If $e^{-S_B} \det M > 0$, interpret as probability weight

evaluate using importance sampling

LATTICE QCD

IMPORTANCE SAMPLING

partition function: $Z = \int DUD\bar{\psi}D\psi e^{-S} = \int DU e^{-S_B} \det M$

• if $e^{-S_B} \det M > 0$, interpret as probability weight

evaluate using importance sampling

QCD at finite baryon chemical potential:

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

fermion determinant is complex!

importance sampling not possible

sign problem

basic tool of all lattice QCD algorithms breaks down Mumbai, February 2010 - p.3

WHY IS THE SIGN PROBLEM DIFFICULT?

PHASE QUENCHED THEORY

write det $M = |\det M| e^{i\varphi}$

- **•** phase quenched theory with weight $e^{-S_B} |\det M| > 0$
- observables:

$$\langle O \rangle_{\text{full}} = \frac{\int DU \, e^{-S_B} \det M \, O}{\int DU \, e^{-S_B} \det M} = \frac{\langle e^{i\varphi} O \rangle_{\text{pq}}}{\langle e^{i\varphi} \rangle_{\text{pq}}}$$

WHY IS THE SIGN PROBLEM DIFFICULT?

PHASE QUENCHED THEORY

write $\det M = |\det M|e^{i\varphi}$ $\Omega =$ lattice volume

- **•** phase quenched theory with weight $e^{-S_B} |\det M| > 0$
- observables:

$$\langle O \rangle_{\text{full}} = \frac{\int DU \, e^{-S_B} \det M \, O}{\int DU \, e^{-S_B} \det M} = \frac{\langle e^{i\varphi} O \rangle_{\text{pq}}}{\langle e^{i\varphi} \rangle_{\text{pq}}} \to \frac{0}{0} \to ??$$

average phase factor

$$\langle e^{i\varphi} \rangle_{\rm pq} = \frac{\int DU \, e^{-S_B} |\det M| \, e^{i\varphi}}{\int DU \, e^{-S_B} |\det M|} = \frac{Z_{\rm full}}{Z_{\rm pq}} = e^{-\Omega \Delta f} \to 0$$

overlap problem, exponentially hard in thermodynamic limit

QCD at finite μ

SIGN PROBLEM

- Solution configurations differ in an essential way from those obtained at $\mu = 0$ or with $|\det M|$
- cancelation between configurations with 'positive' and 'negative' weight
- how to pick the dominant configurations in the path integral?

QCD at finite μ

SIGN PROBLEM

- Solution configurations differ in an essential way from those obtained at $\mu = 0$ or with $|\det M|$
- cancelation between configurations with 'positive' and 'negative' weight
- how to pick the dominant configurations in the path integral?

radically different approach:

■ complexifying all degrees of freedom: $SU(3) \rightarrow SL(3, \mathbb{C})$

stochastic quantization and complex Langevin dynamics

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

idea:

Parisi & Wu '81

- **•** path integral $Z = \int D\phi e^{-S}$
- do not interpret weight as a probability measure
- instead: equilibrium distribution of stochastic process

Brownian motion \Leftrightarrow Langevin eq \Leftrightarrow Fokker-Planck eq

Langevin dynamics in "fifth" time direction

$$\frac{\partial \phi_x(\theta)}{\partial \theta} = -\frac{\delta S[\phi]}{\delta \phi_x(\theta)} + \eta_x(\theta)$$

- Gaussian noise $\langle \eta \rangle = 0$ $\langle \eta_x(\theta) \eta_{x'}(\theta') \rangle = 2\delta_{xx'}\delta(\theta \theta')$
- compute expectation values $\lim_{\theta\to\infty} \langle \phi_x(\theta) \phi_{x'}(\theta) \rangle$, etc

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

action and force $\delta S/\delta\phi$ complex: Parisi, Klauder '83

complexify Langevin dynamics

s example: real scalar field $\phi \rightarrow \phi^{R} + i\phi^{I}$

Langevin eqs

$$\begin{aligned} \frac{\partial \phi^{\mathrm{R}}}{\partial \theta} &= -\mathrm{Re} \left. \frac{\delta S}{\delta \phi} \right|_{\phi \to \phi^{\mathrm{R}} + i \phi^{\mathrm{I}}} + \eta \\ \frac{\partial \phi^{\mathrm{I}}}{\partial \theta} &= -\mathrm{Im} \left. \frac{\delta S}{\delta \phi} \right|_{\phi \to \phi^{\mathrm{R}} + i \phi^{\mathrm{I}}} \end{aligned}$$

- observables: analytic extension $\langle O(\phi) \rangle \rightarrow \langle O(\phi^{R} + i\phi^{I}) \rangle$
- theoretical status not well-established (!)

READING MATERIAL

HISTORY

- original suggestion: Parisi & Wu '81, Parisi, Klauder '83
- overview: Damgaard and Hüffel, Physics Reports '87
- finite μ for three-dimensional spin models: Karsch & Wyld PRL '85, ...
- renewed interest for Minkowski dynamics: Berges, Borsanyi, Sexty, Stamatescu '05-'08

READING MATERIAL

THIS TALK

heavy dense QCD and related models:

G.A. and I.O. Stamatescu: hep-lat/0807.1597, JHEP proceedings: hep-lat/0809.5527, hep-ph/0811.1850

Bose gas:

G.A.: hep-lat/0810.2089, PRL, hep-lat/0902.4686, JHEP proceedings: hep-lat/0910.3772

instabilities:

G.A., F. James, E. Seiler & I.O.S.: hep-lat/0912.0617, PLB

convergence:

G.A., E.S. & I.O.S.: hep-lat/0912.3360
 G.A., F.J., E.S. & I.O.S.: in preparation

HEAVY DENSE QCD

STATIC QUARKS

bosonic action: standard SU(3) Wilson action

$$S_B = -\beta \sum_P \left(\frac{1}{6} \left[\operatorname{Tr} U_P + \operatorname{Tr} U_P^{-1}\right] - 1\right)$$

Wilson fermions in hopping expansion

$$\det M \approx \prod_{\mathbf{x}} \det \left(1 + h e^{\mu/T} \mathcal{P}_{\mathbf{x}} \right)^2 \det \left(1 + h e^{-\mu/T} \mathcal{P}_{\mathbf{x}}^{-1} \right)^2$$

with $h = (2\kappa)^{N_{\tau}}$ and (conjugate) Polyakov loops $\mathcal{P}_{\mathbf{x}}^{(-1)}$ static quarks propagate in temporal direction only

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

COMPLEX LANGEVIN DYNAMICS

Langevin update:

$$U(\theta + \epsilon) = R(\theta) U(\theta) \qquad \qquad R = \exp\left[i\lambda_a \left(\epsilon K_a + \sqrt{\epsilon}\eta_a\right)\right]$$

Gell-mann matrices λ_a ($a = 1, \dots 8$)

drift term

$$\begin{split} K_a &= -D_a S_{\text{eff}} \qquad S_{\text{eff}} = S_B + S_F \qquad S_F = -\ln \det M \\ \text{noise} \\ &\langle \eta_a \rangle = 0 \qquad \langle \eta_a \eta_b \rangle = 2\delta_{ab} \end{split}$$

real action: $\Rightarrow K^{\dagger} = K \Leftrightarrow U \in SU(3)$

complex action: $\Rightarrow K^{\dagger} \neq K \Leftrightarrow U \in SL(3,\mathbb{C})$

(CONJUGATE) POLYAKOV LOOPS

HEAVY DENSE QCD

first results on 4^4 lattice at $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

low-density "confining" phase \Rightarrow high-density "deconfining" phase

DENSITY

HEAVY DENSE QCD

first results on 4^4 lattice at $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

low-density phase \Rightarrow high-density phase

 $SU(3) \rightarrow SL(3,\mathbb{C})$

HEAVY DENSE QCD

- complex Langevin dynamics: no longer in SU(3)
- instead $U \in SL(3, \mathbb{C})$
- in terms of gauge potentials $U = e^{i\lambda_a A_a/2}$ A_a is now complex
- how far from SU(3)?

consider

$$\frac{1}{N} \operatorname{Tr} U^{\dagger} U \begin{cases} = 1 & \text{if } U \in \mathsf{SU}(N) \\ \geq 1 & \text{if } U \in \mathsf{SL}(N,\mathbb{C}) \end{cases}$$

 $SU(3) \rightarrow SL(3,\mathbb{C})$

HEAVY DENSE QCD

 $\frac{1}{3} \operatorname{Tr} U^{\dagger} U \ge 1 \qquad = 1 \quad \text{if} \quad U \in \mathsf{SU(3)}$

OVERLAP PROBLEM

HOW DOES IT WORK?

- s most approaches start from $\mu = 0$ or $|\det M(\mu)|$
- complex Langevin dynamics radically different visualization in simple U(1) model:

•
$$U = e^{ix}$$
 with $-\pi < x \le \pi$

■ complexification: $x \to x + iy$

$$S_B = -\frac{\beta}{2} \left(U + U^{-1} \right) = -\beta \cos x$$

det $M = 1 + \frac{1}{2} \kappa \left[e^{\mu} U + e^{-\mu} U^{-1} \right] = 1 + \kappa \cos(x - i\mu)$

partition function:
$$Z = \int_{-\pi}^{\pi} \frac{dx}{2\pi} e^{\beta \cos x} \left[1 + \kappa \cos(x - i\mu)\right]$$

Mumbai, February 2010 - p.14

OVERLAP PROBLEM

HOW DOES IT WORK?

flow diagrams and Langevin evolution

- black dots: classical fixed points
- \blacksquare $\mu = 0$: dynamics only in x direction
- $\mu > 0$: spread in y direction

OVERLAP PROBLEM

HOW DOES IT WORK?

Mumbai, February 2010 - p.15

PHASE TRANSITIONS AND THE SILVER BLAZE

intriguing questions:

- how severe is the sign problem?
- thermodynamic limit?
- phase transitions?

_ . . .

Silver Blaze problem?

Cohen '03

study in a model with a phase diagram with similar features as QCD at low temperature

 \Rightarrow relativistic Bose gas at nonzero μ

PHASE TRANSITIONS AND THE SILVER BLAZE

- scalar O(2) model with global symmetry
- Iattice action

$$S = \sum_{x} \left[\left(2d + m^{2} \right) \phi_{x}^{*} \phi_{x} + \lambda \left(\phi_{x}^{*} \phi_{x} \right)^{2} - \sum_{\nu=1}^{4} \left(\phi_{x}^{*} e^{-\mu \delta_{\nu,4}} \phi_{x+\hat{\nu}} + \phi_{x+\hat{\nu}}^{*} e^{\mu \delta_{\nu,4}} \phi_{x} \right) \right]$$

• complex scalar field, d = 4, $m^2 > 0$

•
$$S^*(\mu) = S(-\mu^*)$$
 as in QCD

also studied by Endres using worldline formulation hep-lat/0610029

PHASE TRANSITIONS AND THE SILVER BLAZE

nonderivative terms at tree level in the continuum

$$V(\phi) = (m^2 - \mu^2) |\phi|^2 + \lambda |\phi|^4$$

condensation when $\mu^2 > m^2$, SSB

COMPLEX LANGEVIN

• write
$$\phi = (\phi_1 + i\phi_2)/\sqrt{2} \Rightarrow \phi_a \ (a = 1, 2)$$

- \checkmark complexification $\phi_a \rightarrow \phi_a^{\rm R} + i\phi_a^{\rm I}$
- complex Langevin equations

$$\frac{\partial \phi_a^{\mathrm{R}}}{\partial \theta} = -\mathrm{Re} \left. \frac{\delta S}{\delta \phi_a} \right|_{\phi_a \to \phi_a^{\mathrm{R}} + i\phi_a^{\mathrm{I}}} + \eta_a$$
$$\frac{\partial \phi_a^{\mathrm{I}}}{\partial \theta} = -\mathrm{Im} \left. \frac{\delta S}{\delta \phi_a} \right|_{\phi_a \to \phi_a^{\mathrm{R}} + i\phi^{\mathrm{I}}}$$

- straightforward to solve numerically, $m = \lambda = 1$
- In lattices of size N^4 , with N = 4, 6, 8, 10

COMPLEX LANGEVIN

field modulus squared $|\phi|^2 \rightarrow \frac{1}{2} \left(\phi_a^{R^2} - \phi_a^{I^2} \right) + i \phi_a^R \phi_a^I$

COMPLEX LANGEVIN

field modulus squared
$$|\phi|^2
ightarrow rac{1}{2} \left(\phi_a^{\mathrm{R}2} - \phi_a^{\mathrm{I}\,2}
ight) + i \phi_a^{\mathrm{R}} \phi_a^{\mathrm{I}}$$

second order phase transition in thermodynamic limit

COMPLEX LANGEVIN

COMPLEX LANGEVIN

second order phase transition in thermodynamic limit

SILVER BLAZE AND THE SIGN PROBLEM

RELATIVISTIC BOSE GAS

Silver Blaze and sign problems are intimately related

- complex action: $e^{-S} = |e^{-S}|e^{i\varphi}$
- phase quenched theory $Z_{pq} = \int D\phi |e^{-S}|$

physics of phase quenched theory:

chemical potential appears only in mass parameter (in continuum notation)

$$V = (m^{2} - \mu^{2})|\phi|^{2} + \lambda|\phi|^{4}$$

dynamics of symmetry breaking, no Silver Blaze

SILVER BLAZE AND THE SIGN PROBLEM

COMPLEX VS PHASE QUENCHED

density

complex

phase quenched

phase $e^{i\varphi} = e^{-S}/|e^{-S}|$ does precisely what is expected

HOW SEVERE IS THE SIGN PROBLEM?

AVERAGE PHASE FACTOR

• complex action
$$e^{-S} = |e^{-S}|e^{i\varphi}$$

average phase factor in phase quenched theory

$$\langle e^{i\varphi} \rangle_{\rm pq} = \frac{Z_{\rm full}}{Z_{\rm pq}} = e^{-\Omega \Delta f} \to 0 \quad \text{as} \quad \Omega \to \infty$$

exponentially hard in thermodynamic limit

HOW SEVERE IS THE SIGN PROBLEM?

AVERAGE PHASE FACTOR

old problem from the 80s: instabilities and runaways

- unstable classical trajectories
- force not always restoring
- noise should kick trajectories of unstable paths.

careful integration mandatory

adaptive stepsize

Solution SY model at nonzero μ and heavy dense QCD

XY MODEL

three-dimensional XY model at nonzero μ

$$S = -\beta \sum_{x} \sum_{\nu=0}^{2} \cos\left(\phi_{x} - \phi_{x+\hat{\nu}} - i\mu\delta_{\nu,0}\right)$$

 \checkmark μ couples to the conserved Noether charge

• symmetry
$$S^*(\mu) = S(-\mu^*)$$

unexpectedly difficult to simulate with complex Langevin!

numerics shares many features with heavy dense QCD

also studied by Banerjee & Chandrasekharan using worldline formulation hep-lat/1001.3648

XY MODEL

classical forces

$$K_x^{\rm R} = -{\rm Re}\frac{\partial S}{\partial \phi_x}$$
$$K_x^{\rm I} = -{\rm Im}\frac{\partial S}{\partial \phi_x}$$

s restrict maximal step ϵK^{\max}

large force \Leftrightarrow small stepsize

XY MODEL

 K^{\max} and adaptive time step during the evolution

XY MODEL

 K^{\max} behaves as expected:

- fluctuates over several orders of magnitude
- fluctuations increase with volume: more potentially unstable trajectories
- stepsize has to be small occasionally but recovers

with adaptive stepsize: no instabilities encountered!

many very long runs for wide range of parameters

with fixed stepsize: impossible to generate a thermalized configuration!

Heavy dense QCD, $\beta=5,\kappa=0.12,\mu=0.7,2^4$

same is true for heavy dense QCD

occasionally *very* small stepsize required can go to longer Langevin times without problems

Mumbai, February 2010 - p.28

XY MODEL

PHYSICS RESULT

action density in the magnetized phase ($\beta = 0.55$)

real μ ($\mu^2 > 0$) imaginary μ ($\mu^2 < 0$) and phase quenched

XY MODEL

PHYSICS RESULT

- $\,$ real and imag μ results analytic in μ^2
- phase quenched result distinctly different

imaginary μ :

Solution (Conter Symmetry is trivial)
Solution (Conter Symmetry is trivial)

SUMMARY

FINITE CHEMICAL POTENTIAL

many stimulating results:

complex Langevin can handle

- sign problem
- Silver Blaze problem
- nonabelian dynamics

problems from the 80s:

- phase transition
- thermodynamic limit
- $SU(3) \rightarrow SL(3,\mathbb{C})$

- \bullet instabilities and runaways \rightarrow adaptive stepsize
- Convergence to correct result: can be highly nontrivial hep-lat/0912.3360